
How Does a Liquid Wet a Solid? 
Hydrodynamics of Dynamic Contact 
Angles
A contact line is defined at the intersection of a solid surface with the interface between 
two immiscible fluids. When one fluid displaces another immiscible fluid along a solid 
surface, the process is called dynamic wetting and a "moving" contact line (one whose 
position relative to the solid changes in time) often appears. The physics of dynamic 
wetting controls such natural and industrial processes as spraying of paints and 
insecticides, dishwashing, film formation and rupture in the eye and in the alveoli, 
application of coatings, printing, drying and imbibition of fibrous materials, oil recovery 
from porous rocks, and microfluidics.

Left: Shadowgraph of the static meniscus of silicone oil on Pyrex (Corning, Corning, 
NY). Field of view is about 600 µm in the horizontal direction. The fluid slightly overfills 

a Teflon beaker, 10 cm in diameter. A Pyrex tube, 2.54 cm in diameter, is immersed in 
the fluid. Because of the slight overfill, the meniscus appears above the beaker rim and 

can, thus, be imaged optically. Right: Static meniscus of silicone oil on Pyrex: The angle 
between the solid and the interface tangent is shown versus the distance from the contact 

line from image analysis of the picture in the first figure. The slope extrapolates to a 
static contact angle, ~4°, at the contact line. The solid line shows the best fit of the static 

capillary theory. The theory's only adjustable parameter is the contact angle.

The contact angle, the angle formed at the intersection of the solid and the fluid-fluid 
interfaces, is a key material property needed to determine the shape of the fluid-fluid 
interface. It serves as the boundary condition for a differential equation describing the 
interface shape. In static capillary systems (e.g., the water meniscus formed on a clean 
glass plate), the static contact angle is routinely used for this purpose. The preceding 
image shows a magnified view near the contact line of a static meniscus formed by 
polydimethylsiloxane (silicone oil) on clean Pyrex: the air is clear, the fluid below is dark, 
and the vertical straight line at the top right is a Pyrex glass immersed in the fluid. Since 
silicone oil wets glass "perfectly," its contact angle is very close to zero. The preceding 
graph shows the angle between the solid and the tangent to the static interface of the 



shadowgraph image, as a function of the distance to the contact line, r. The solid line is 
the solution of the static capillary theory (ref. 1). Clearly, the slope may be safely 
extrapolated to the contact line, r = 0, at which point the angle equals the static contact 
angle of the system.

In dynamic systems, however, the "dynamic" contact angle is not well defined. For 
example, when a silicone oil of viscosity µ = 10 poise (1000 times more viscous than 
water) and surface tension σ = 20 dyn/cm advances on Pyrex with velocity U = 0.02 
cm/sec, the following image on the left shows that the dynamic contact angle is close to 
67°. The controlling factor for the observed dynamic contact angle is the dimensionless 
group known as the capillary number, Ca = Uµ/σ. When Ca = 0.1, silicone oil forms a 
contact angle close to 120° (right image).

Dynamic interface shape of silicone oil on Pyrex. Left: Ca, 0.01. Right: Ca, 0.1. Because 
of the high viscous forces near the contact line at Ca = 0.1, the macroscopic meniscus is 

bent into depression. Thus, the liquid is clear and the air is dark. 

Despite their well-behaved appearance, these dynamic interfaces are fundamentally 
different from static interfaces. The final two graphs show that, when the dynamic 
interface shape is digitized and the angle is plotted versus the distance from the contact 
line, the slope does not attain a well-defined limit at the contact line (r = 0). Viscous 
forces dramatically bend the interface near the contact line. This suggests that, in contrast 
to the static contact angle (see the first graph, preceding page), the dynamic contact angle 
is not a well-defined quantityit is not at all clear where on the interface one should apply 
the slope condition in order to calculate the interface shape. Nevertheless, a dynamic 
contact angle is still necessary to calculate the interface shape in dynamic conditions, the 
pressure drop necessary to move a meniscus in a capillary tube, and the spreading 
dynamics of small droplets.



Angle between solid and tangent to the interface versus distance from contact line at Ca 
= 0. The solid line shows the best fit of the dynamic theory (ref. 2). The theory's only 

adjustable parameter is a property that controls dynamic wetting and whose role is that 
of an "apparent" contact angle.

Angle between solid and tangent to the interface versus distance from contact line at Ca 
= 0. The solid line shows the best fit of the dynamic theory (ref. 2).

Principal investigator Professor Stephen Garoff of Carnegie Mellon University and 
coinvestigator Enrique Ramé of the National Center for Microgravity Research in Fluids 
and Combustion have been studying these systems for about 10 years. The objectives are

Identify and measure material-dependent, geometry-independent properties for 1.
describing dynamic wetting predicted in theoretical analyses valid at a low Ca. 

Test the theories by measuring the property in two different geometries and using 2.
it to predict the flow in a third geometry. 

Generate geometry-independent dynamic contact angle information outside the 3.
range of the validity of the theory (Ca ~ 1). 

By using an asymptotic theory valid at Ca<<1 (ref. 2) and measurements of the interface 
near the contact line, we can extract a material parameter describing wetting dynamics. 
This parameter can be translated to geometries different from that where the measurement 
was performed, giving the approach predictive power. When Ca is not <<1, a geometry-
free region of flow near the contact line must first be identified; then the interface shape 
and velocity field measured in that region can be used as boundary conditions for actual 
calculations. During the last year, as part of our ground-based program, we have begun to 
understand some subtleties of unsteady wetting behavior through a series of controlled 
experiments; a manuscript describing this work is in preparation.

The NASA Glenn Research Center is in the process of developing flight hardware to 
conduct a microgravity experiment to study the microscale phenomena in the vicinity of 
the moving contact line. In the absence of gravity, the region dominated by capillary force 
is enlarged, allowing detailed observations of flow and meniscus shape.
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